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THE TWO DIMENSIONAL CONTACT PROBLEM OF A
ROUGH STAMP SLIDING SLOWLY ON AN
ELASTIC LAYER—II. THIN LAYER ASYMPTOTICS

J. B. ALBLAS and M. KUIPERS

Technological University Eindhoven, Netherlands

Abstract —An approximate solution is obtained for the contact problem of a layer of finite thickness loaded
by a rough cylindrical stamp which moves along the boundary. The coefficient of friction is assumed to be constant.
The lower side of the layer is attached to a rigid base. In the problem inertial forces are neglected and the solution
is approximated by a plane strain solution. In this part of the paper the layer is assumed to be very thin with
respect to the width of the contact region and the governing integral equation is reduced to one of the Wiener—
Hopf type. In the solution terms of exponential decrease are neglected consistently.

1. INTRODUCTION

FoR a general statement of the problem to be dealt with, we refer to Part I of this investiga-
tion. The mathematical methods to be applied here differ considerably from those used for
the thick layer asymptotics and this fact justifies a separate treatment. While the solution
of the thick layer problem may be found by perturbing the half-plane solution, the perturba-
tion originating from the lower plane boundary conditions, the thin layer asymptotics is
based upon the fact that the effects of applied forces decrease exponentially from the point
of application. Actually, a force acting on the boundary of a very thin layer has a local
influence and we may use this fact for simplifying the governing integral equation. For
more general considerations concerning thin layer asymptotics we refer to a recent paper [1].

2. THE THIN PLATE
In the sequel we shall retain the notation of Part I. The basic integral equation is
equation (2.21) of Part I, viz.
(x—d)?

f p(y){Sl( —y)+ )Sz(x y}} dy = - SR

which has to be solved subject to the condition
q<«1. (2.2)
Here S,(t) and S,(¢) are defined by [cf. Part I, (2.18), (2.19)]

+0o, 0<x<, (2.1

S, = f_ ;EW) Y dw, 2.3)
Sy(t) = f_ J‘-i”—"z YL aw (24)
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with
w =gl {2.5)
while K (w) and K,(w} are given in (2.15) and (2.16) of Part 1. From (2.3) and (2.4) we derive
the identity
/ T e K(w) if Kyw)
S (t) +—1— 5 = fwefgy ) 220 g = 2.
1m+2(1——v) ) J‘.re { w +2(1~v) W dw. (2:6)

noting that the function K,(w) is even, while K (w) is odd. In (2.6) the path of integration
is along the real axis. The inversion formula of (2.6) is

K 1 ™ ) N
Kalw, K _ I | {Si(zqwzh‘é;;sz{zq)} e dr 27)

W +2(1—v) w 2z

which we write in the following form

K, (g: K 1 i ;
) s [ {S*(‘“ﬁfi‘?ﬁSz")} et =

To proceed we introduce the function

' K,{gs) if Kylgs) )
S(s) = R +2h—;v*) I 2.9)

Similar to the treatment given in Ref. [1] we write the integral equation (2.1) as follows

f” p(y) {Sx(x“)’)ﬁ-éa!:*v—)sz(x—y)} dy = v{x)+g(x), (—wo < x < ), (210

where the functions v(x) and g{x) are defined by

(x —d)?
v(x) = vy +- IR O<x<, (2.1
(x) = G, {(x <0,x>1} (2.12)
g(x) =0, 0<x <), (2.13)
g(x) # 0, (x <0,x>1), (2.14)
and where, in addition
p=0 forx>1,x<0. (2.15)
With the introduction of
P_(5) = ~r f 1+y)e™dy, (2.16)
() = (2 ) p( y
G, 1+ y)e™ dy, 217
()= \/(z )[ gll+y)e™ dy

O
() = L s dy, 2.18
60 = [ e 2.18)
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the equation (2.10) may be transformed into

JEmMP_()S(s) = J(2m)G 1 (5) +2m)G _(s)+ j ) {1+ x)e** dx, (2.19)

-

where we have absorbed the factor 27 into p, so that
{—
p(Part 1} = 2ap(Part I) = ——;;-Y- times the pressure. (2.20)

We note that P_(s) is regular in a lower half-plane Im s < —¢, < 0, G_(s) is regular in
a lower half-plane Im s < ¢, with ¢, > 0, while G .{s) is regular in an upper half-plane
Ims > —g; with g5 > 0. Obviously, the functional equation (2.19) holds in a strip below
the real axis.

Equation (2.19) is completely equivalent with the integral equation (2.1} and it is valid
for all values of the thickness parameter ¢. In order to obtain an asymptotic approximation
for the case (2.2), we shall simplify (2.19) in the following way. We first calculate the integral
in (2.19) and find

R |T¥ R TIRS®

re| _ L, +d2 d oy !
ist °"2R R32 iRs3

In view of (2.2) the terms with e * in (2.21) and the function G _(s) contribute terms in
the solution which are exponentially small. Therefore we drop them from (2.19) which
becomes

0 —dy? -
f v(1+x)e**dx = ;;(vo-‘rﬁ 4) ) 11-d_ 1
-1

(2.21)

(1—d)*] 11-d_ 1

JRDP_(5)S(s) = \J2m)G .(s) + [ ]+32 T 2.22)

This is the fundamental functional equation which can be solved with the aid of the
standard Wiener-Hopf method.

3. SOLUTION OF THE FUNCTIONAL EQUATION (2.22)

For a general discussion of the problem (2.22) we refer to our Refs. [1] and [2] or to
the literature on the Wiener—Hopf technique e.g. [3]. If we put s equal to zero in the function
S(s), given in (2.9}, we obtain

q(1—2v)

SO0 = 2a

3.1

and its asymptotic formula for {s| — oo in the strip is given by

f1-2v)
S(c0) ~ [1 ) } (32)
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We decompose S{s} according to
S.(s)

where S_(s) is regular in a lower half-plane and S ,(s) is regular in an upper half-plane.
The two half-planes have a strip below the real axis in common. Using (3.3) we write (2.22)
in the form

. 1 (s (1—=d)¥ 1—d 1 o
$3S_(s)P_{s) = 5,(s)[m-,7{-i (vo+ : R'}“) +—»R«s»—[_—§} +s3o+(s)} (3.4)

and we conclude that both sides of this equation must be equal to a polynomial.
From the asymptotic formulae of S_(s} and S,(s) in their respective half-planes as
Is] = oo (cf. Appendix)

S {s) ~ 0Os™%, (3.3)
S.(8) ~ 0(s' 79, (3.6)

and from the assumption of bounded pressure, we see that the degree of the polynomial
does not exceed one. We then find

Co+Cy8

(s) = o4 37
P-(s) s*S _(s) (37
; coteys 1 (i (1-dy*} 1-d 1 1 o
terarr )t voey e, o 38
G4() $*8.(8) +\/(2n) {S(DQ+ 2R R s* TR (38)

The solution (3.7), (3.8) contains four unknown constants: ¢, ¢, v, and d, which have
to comply with the conditions expressing the regularity of G .{s} at s = 0, yielding

L1 5.0

“©= " Jom iR (3.9)
o1

= e = [(1— iS', (O)], 3,10,

Cy \/(Zn)Rm d)S (O + S {0}] (3.10)

; N2

é S”(0)+(1 = d)S', (0)— iS+(O)[90R +(!—-7f?l} -0 (3.11)

The equations (3.9)-(3.11) constitute three equations for the four unknowns. By considering
the system with a reversed motion:

[ —f (3.12)

we can supply the additional equation.
Denoting the functions pertaining to the reversed motion by a star

S(s) — S*(s), Co — Ch, ¢y = ¥, {3.13)

we obviously have
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Analogous to (3.9)-(3.11) we then obtain

.1 840

o = ":/_(5;;) R’ (3.16)
1

%S’i"(())+dSﬁ’({})—iS’i(O)(voR +%—2-) =0. (3.18)

The constants ¢y, ¢, ¢§, c¥, vy, and d may be determined by the equations (3.9)-(3.11)
and (3.16)-(3.18).

4, THE PRESSURE AND THE DISPLACEMENT
From (3.7) and (2.16) we find for the pressure p

o *iy Coteis _ix-1)
x) “is- b g, x > %), 4.1
M= o) S5 6 =3 @

where —g; <y < —¢y.
Referring to (2.15) we see from (4.1) that p(x) satisfies

p(x) =0, x=1). 4.2)
From (3.8) and (2.17) we derive

x J400+l}' C0+C13 I l +(}"“d)2 _1“d+ 1 "iS(X“I)d
8= Jom ) 59520 IO 5 2R |7 RsZ TiRsS | © >

(x>0. (43)

From the representation (4.3) it may be shown that g(x) satisfies (2.13), while g(1)
and g'(1) are given by

(1-d)®

g(l) = Dy +"‘~2?“, 4.4)

and
gl) = —— (4.5)

respectively.
In order to find the pressure p(x) for x < $ and the displacement g(x) for x < 0, we
use the results obtained for the reversed motion (3.12). In this way we arrive at

@ +iy Co+c

plx) = J (Zn)f S e ds, (x < %), (4.6)

oo+:y 3St(S)



230 J. B. ALBLAS and M. KUiPERS

and

(X) = »lm-f:r+iy ()§+CTS+'* ! d —+ & d +7l isx 4 (x < |
SR=Jen) et TUem s\ TR TR TR (€0 9% <D

(4.7)

From these results we infer some conclusions similar to (4.2), (4.4) and (4.5).
The total force P is found by integrating p(x) over the interval 0 < x < 1. We find

i 2T feo+eys ko]
Pl ) e e

5. NUMERICAL RESULTS

Using the Tables 1 and 2 (cf. Appendix) we have evaluated the displacement v, for
some values of Poisson’s ratio and the friction coefficient. The results are given in Table 3.
We also obtained some values for the constant d which are given in Table 4. By contour
integration of (4.8) we calculated the total force P. We found

/ Co Cy )3 CT
P=/Qn a+ b+ a*+ b* |, 5.1
VI )[s_«)) s 0 Ts0)" Ts* 0 ] (5-1)
where
i 18.(0) i{S2(0) 150 1.87(0) S_(0)S-(0) S’(0) (52)
a= ———t— —"l}— - _— — , .
48 8 S_(0) 21S%2(0) 2S_(0) 6 S_(0) 52(0) S3(0)
y_ 1 5.0 (ST0) 1S(0) (5.3)
8 2S_(0) \S%) 2S_(0)) '
while a* and b* are similar expressions, formed from $* (0) and the derivatives.
TABLE |
v f 5.,(0) $.(0) 570y 570  5.(0)  S_(0) $7(0) 57(0)
70-2 01 —21333¢7" 40390 +0011¢  +0-096ig® | —016ig —005¢> —0-003 iy>
0.2 05  —21333¢7'  +045i +0028q¢ +016ig? 1 ~012ig  —00342 +0017ig?
0-4 01 —36qg" —069i +346¢  +1595ig7 | +005ig  +043¢47 —1-61iy°
0-4 05  —36g7" —191i +898¢  +5186ig> | —021ig  —037¢° +141ig°
TABLE 2
v ;o SHo) 5%(0) SA(0) 5%"(0) 5*(0) 5*1(0) 5%(0) o)
02 01 1 —016ig +0105¢> —008ig> —046875¢ +009ig* —0034¢° +004i4°
02 05 1 —012ig +0063¢g> —0018ig> —0-46875¢ +0-10ig> —00494> +0-07 iy*
0-4 0-1 I 4+005ig —042g2 —173ig" —02778q —0-15ig> —0294° +092ig*

04 05 1 —021ig +0464> +088ig> -02778q —042ig> —0854> +1.55ig*
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TABLE 3
v f 129
1 ;
02 01 i[—0‘125—04086q +00259%+0(¢)]
1
02 0:5 i[—0‘125—~0~083 g+0014 g% +0(g*)]
1
0-4 o1 §{~0.125 +0-060 g — 0475 42 + g )]
1
0.4 0.5 i[—0-125+0~014q-o-zsz;OqZJrO(:f)]
TABLE 4
v f d
02 01 0-5+0:011 g +0-051 g* +0(g%)
02 0-5 0-540.046 g +0-023 ¢* +0(g*)
04 01 0-5—0:071 ¢ + 0453 ¢* +0(g7)
04 05 050238 g+ 1.464 ¢ +0(g°)

In (5.1) the contributions resulting from the poles of S _(s) and S* (s) have been omitted
in view of the consistency with the approximations, made a priori. In Table 5 we show the
results of this computation.

The pressure distribution p(x) has been calculated by contour integration of (4.1) and
(4.6). Intheregion 7 < x < 1—¢,,withe, > g/aandintheregiones < x < $withe; > g/a
we may neglect the poles of S_(s) and S*(s), respectively, as they contribute terms which
are exponentially small. In the first region we find

N P B S R
5.0) o
50 0 ¢ 1)}] G <x<l-e)
TABLE 5
v f P

02 01 }—1[0478 G~ ' +002440027 g — 0037 >+ 0(g%)]

02 05 %[0. 178974 +0-065+0-005 g +0-020 g% + 0(g )

0.4 01 %[03(1"'1—0-202+0~094q+3-923q2+0(q3)]

04 05 %[0-3[]"~0~253+3-119q+26~471q2+0(£13)}
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FI1G. 2. The pressure distribution for /' = 0, 5.
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and a similar expression is obtained for the region 3 > x > ¢5. In the neighbourhood of
x = 1, the pressure p(x) tends to zero as

px) =0[(1-x)'"%, x~1, (5.5)
while near x = 0 the corresponding formuia is
p(x) =0x"], x=0. (5.6)

In Figs. 1 and 2 Rg p(x) is given as a function of x for some values of Poisson’s ratio and
the friction constant.
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APPENDIX

The problem of the decomposition of the function S(s), given in (2.9) is solved by a
straightforward splitting of the product representation. To facilitate the discussion we
introduce

z=24s, t= mf:j), =34y, B=21-2), S =q¥ (AD
with
-2
P(0) = _5(11_:;‘;_2, (A.2)
O = L=
YO =~ g7 ) (A3)
Writing
T
¥(z) = ﬁ% (A4)
with
T(z) = 2(1 -as—ii’;f)+2nz[1-aﬁ(cosif = 1)] (A5)

N(z) = acosh z+ 422 +(a +18%), (A.6)
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we see that W(z) is a meromorphic function. The zero’s of N(z) are
(a) two points on the imaginary axis: iad and —ia, with ¢ > 0:
(b) an infinite sequence of points in the complex plane : p,, —p., P, — Ptk = 1.2,
with Im p, > 0, Rep, > 0.
The zero’s of T(z) are, for 1 > 0,
(a) one point on the imaginary axis: ic, with ¢ < (;
{b) an even number of points on the same axis: ih,, ib, ... ib,,, with b, > Q. It appears
thatn = 0,1 or 2;
(c) an infinite sequence of complex numbers ¢,. — g, (k = 1,2,...), with Im g, > O,

Reg, > O:
(d) an infinite sequence of complex numbers r,, —F,, (k = 1,2,...), with Imr, < 0.
Rer, > 0.
We have derived some asymptotic expressions for the roots. We found
dk*n? log k ]
P = log(f ") + 2k +()(g),
z k
SmZ ' log k .
=1 ek i 2kn—-— ) Of ——1|, pk » 1 A7
Y Ogl:a\/(l R ]+1( n 2 Qo + ( X ) > (A7)
8m? log k
ol e 7Y
with
@, = arctan ft, 0< g, < r (A.8)

>

According to a well-known theorem we may represent ‘¥(z) in the following form

JPN0)

(1-—~/lb1)(l—z/lb2) (l~-7,1c)
_ woy !

Y(z) = Y(0)e a ~/./za)(1 \ 2ia) .

ﬁ (1=z/g )1 +z/g ) (1 — z/r)(1 +2/7y)
e=1 (L—=z/p) (1 +2/p )1 —z/p) (1 + 2/py)

1 | ] 1t 1 1
e I o B e A9
xp {( ib, o ib, + i(‘) (qk Ju T rk)} (A9)

The representation (A.9) is

onst.z £1(2)
¥ = J(0) goonst.z R .
( Py(z)

where P, and P, denote the products in nominator and denominator of (A.9) respectively.
It may be shown that (A.10) may be written as
(1 —z/ib )(1 —z/ib,) .. 1~z/lc)
(1—2z/ia)(1 +z/ta)
2 (1 z/q) (1 +2/g) (1 — z/r) (1 + 2/Fy)
=1 (1 —2/p)(1+2/p) (1 —z/P)(1 + 2/

(A.10)

Y(z) = Y(0)

(A.11)
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From (A.11) we derive for the decomposition

_Y.e (A.12)
Y. (2)
the foliowing representations
_ (1 +zfia). e 2 (1+2/p)(1—2z/py)
¥+ = o) —zia L (=214 277’ A
@ _(z) = L2/t =2fiby) . e 5 (L= 24, (L+2/3) (A.14)

(1 ~z/ia) i1 (L—z/p )1+ 2/p)

where x(z) has to be determined.

With the aid of (A.7) it may easily be proved that the products in (A.13) and (A.14) con-
verge, If we require algebraic behaviour for W ,(z) and ¥ _(z) in their respective half-planes,
as |z| — o0, we have to take

¥z) = 0. (A.15)
This may be proved as follows.
We compare the product P(z), defined by

P() = T] (+2/p) e [T (1-z/p) e,
k=1 k=1
with
@ ) ki i 1 2
J(z) = 1+ 2/2kmi)* e **™ = g7 7#/™ ——— Al
(2) RIJI( +z/2kmi)* e e [F(l +z/2m,):| , (A.16)

where 7 is Euler’s constant. Then we find

P(2) .

7@ ~ 0(1), for|z| — oo in the upper half-plane. (A.17)

Writing the product in (A.13) in the following form
(1+2z/p) e 2 [T (1~2z/p) e =2
1 k=1

(1‘_Z/rk)e-z/2km" l"[ (1+z/;.k)e-z/2kni
1 k=1

s

e
I

s

P
Il

we see that for |z] — oo its asymptotic behaviour in the upper half-plane is given by

2
F(1+n/2+¢0 z )

; 1 2 ; 2n  2nmi
e vz/2=ni eszZm
o [(1 +2/2ni) 72+ %o
t+——
2n
A.18
T(5/4+@o/2n+z/2mi)\ 2 ( )
= 0(1) . ~ zli2+eu/n
'l + z/2ni)
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From (A.18) we see that we must take y = 0, as has already been stated by (A.15}.
For v s %, ¢ # 0 and we conclude that the asymptotic formula for S, (s) is

S.(s)~ 0(s" 9 {A.19)
conform to (3.6), as
Qo = $—0 {A.20)
From (A.19) we infer that
S_(s) ~ O(s™%), (A21)

according to (3.5).
Numerical values of §7,(0), $7.(0), $7.(0) and §"_{0), $”.(0), S”(0) are given in Table I.
For the reversed motion (3.12) we define
_ )

Pr o (A.22)
NG) (A22)

which satisfies
T -2 T(2) .
* —_ sy em o e 2
V=2=Y0 =", ~~No (A-23)

From {A.23) we infer that

+ z

From (A.24), (A.25) we have found the numerical values of S%(0), $%"(0), $*"(0) and
S¥(0), S*(0), S*(0), which are presented in Table 2.
We note that we have
L § —v)?
YO 12

Y 0)=1; Y0 = {A.26)

In our numerical calculations it is preferable to normalize S_(0) and S..(0) in another
way. We take

1 2(1—v)? .
= = = i A27)
SO =1 S.0=g5=— T (A27)
From (A.24) and (A.25) we see that then

*(0) = *(0) — _41-2v) A28
SHO =1, SO =~y (A.28)

From the definition S_(s) = S(s)S ,.(s) we further derive that

—v)2 g(1—2

—S§_(0) = S'(O)Zz,(l W A=) o ), (A29)

(1—2v) 2(1—v)
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where

1—4
S(0) = -2zfq28—(3t;‘;—2. (A.30)

(Received 29 September 1969)

Abcrpakr—Ilonyvaercs npubmuxeHHOe pelueHNMEe KOHTAKTHOH 3a/auM, Kacaromwelcs Clnog KoHeyHoM
TOJHIHHBL, HATPYKEHHOT0 LIEPEXOBATHIMIMIMHAPUHECKHM HITOMIIOM, KOTOPBIN ABHXETCH BIOIb TDAHUUBL,
IIpennaraercd NOCTOAHHBIM KO3pOuIUHMEHT TpeHns. HukHAA CTOPOHA CHOA TPHKPEIUIEHA K JKECTKOMM
OCHOBaHMK. B 3amave mpeneGperaeTcs MHEPLMOHHBIME YCHOBMAMHE . PelleHue npudinxaercs ¢ moMouibio
pelIeHus IA TUIocKoi nedopmanmu. B 310l yacTH paboThl mpeanonaraeTcs, MO OTHOLUCHHIO X LIAPHHE
paiioHa KOHTAKTa, OYeHb TOHHHMH coif. Onpenensioee HHTErPATbHOE YPABHEHKE CBOIOTCS K YPABHEHUIO
THna Bunepa-Xonga. B pewesnuu npeHedperatoTCs MOCTENCHHO WICHAMM 3KITOTEHIUAILHOTO YOLIBAHUA.



