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THE TWO DIMENSIONAL CONTACT PROBLEM OF A
ROUGH STAMP SLIDING SLOWLY ON AN

ELASTIC LAYER-II. THIN LAYER ASYMPTOTICS

J. B. ALBLAS and M. KUIPERS

Technological University Eindhoven. Netherlands

Abstract--An approximate solution is obtained for the contact problem of a layer of finite thickness loaded
by a rough cylindrical stamp which moves along the boundary. The coefficient offriction is assumed to be constant.
The lower side of the layer is attached to a rigid base. In the problem inertial forces are neglected and the solution
is approximated by a plane strain solution. In this part of the paper the layer is assumed to be very thin with
respect to the width of the contact region and the governing integral equation is reduced to one of the Wiener­
Hopf type. In the solution terms of exponential decrease are neglected consistently.

1. INTRODUCTION

FOR a general statement of the problem to be dealt with, we refer to Part I ofthis investiga­
tion. The mathematical methods to be applied here differ considerably from those used for
the thick layer asymptotics and this fact justifies a separate treatment. While the solution
of the thick layer problem may be found by perturbing the half-plane solution, the perturba­
tion originating from the lower plane boundary conditions, the thin layer asymptotics is
based upon the fact that the effects of applied forces decrease exponentially from the point
of application. Actually, a force acting on the boundary of a very thin layer has a local
influence and we may use this fact for simplifying the governing integral equation, For
more general considerations concerning thin layer asymptotics we refer to a recent paper [1].

2. THE THIN PLATE

(2.1)

(2.2)

(2.3)

(2.4)

(0 s x S 1),

In the sequel we shall retain the notation of Part I. The basic integral equation is
equation (2.21) of Part I, viz.

(1 { f } (X-d)2J
o

p(y) Sl(X- Y)+2(lV)S2(X- y) dy = 2R +vo,

which has to be solved subject to the condition

q « 1 ,

Here St(t) and S2(t) are defined by [cf, Part I, (2.18), (2.19)]

foo Kt(w) wt
St(t) = cos-dw,

-00 w q

S () foo K2(W) . wt
2 t = sm -dw,

-00 w q
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with
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W = q¢, (2.5)

while K l(W) and K 2(w) are given in (2.15) and (2.16) of Part 1. From (2.3) and (2.4) we derive
the identity

SI(t)+2---(IL -)S2(t) = Jq

" e--i(Wllq){~_Ji",,)+~_if _. !-2(~2} dw, (2.6)
- v -1:; W 2(1 - v) w

noting that the function K 2(w) is even, while K 1(w) is odd. In (2.6) the path of integration
is along the real axis. The inversion formula of (2.6) is

~1(Wl+_iL_ Kz(w) = 1 J~'l'" {SI(tq )+,,_-L_S2(tq )} eilWdt,
W 2(1-v) W 2n: -x 2(1-v)

which we write in the following form

Kl(q:~2+_!L_ K2~qS) = 1 J'Y' {Sl(t)+~-S2(t)} eisl dt.
s 2(1- v) s 2n _ 1:; 2(1- v)

To proceed we introduce the function

K1(qs) if K 2(qs)
S(s) = ----.-+---.., ---~

s 2(1- v) s

(1.7)

(2.8)

(2.9)

Similar to the treatment given in Ref. [1] we write the integral equation (2.1) as follows

ex: { f 1I 'i) plY) SI(X Y)+2(i-'0S2(X-Y)r dy = v(x)+g(x),

where the functions r,1x) and g(x) are defined by

(x-df
v(x) = vo+---2R' (0 :'S.:: x :'S.:: 1), (2.1l)

and where, in addition

vex) = o.
g(x) = 0,

g(x) of 0,

(x < 0, x> I),

(0 :'S.:: x :'S.:: 1),

(x < 0, x> I),

(2.12)

(2.13)

(2.14)

With the introduction of

p = 0 for x > 1, x < o.

1 JO (1 ) isy dP_(s) =_..-- ,P +Y e y,
J(2n) -00

G +(8) =J(~n) {U g(l +y) e
isy

dy,

G _(8) = J(~1t)rCD g(y) e
iSY

dy,

(2.15)

(2.16)

(2.17)

(2.18)
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the equation (2.10) may be transformed into
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where we have absorbed the factor 2n into p, so that

1 v. h
p(Part II) = 2np(Part I) = times t e pressure.

J1
(2.20)

We note that P_(s) is regular in a lower half-plane 1m s ~ -e l < 0, G_(s) is regular in
a lower half-plane 1m s ~ 82 with 82 > 0, while G +(s) is regular in an upper half-plane
1m s > - 8 3 with 83 > O. Obviously, the functional equation (2.19) holds in a strip below
the real axis.

Equation (2.19) is completely equivalent with the integral equation (2.1) and it is valid
for all values of the thickness parameter q. In order to obtain an asymptotic approximation
for the case (2.2), we shall simplify (2.19) in the following way. We first calculate the integral
in (2.19) and find

Io ( ) isxd l( (l-d)2) I1-d 1v l+x e x =- vo+~- +------
_ 1 is 2R S2 R iRS3

-is[ 1( d
2

) d 1]+e -~ vO+ 2R +Rs2 +iRs3 •

(2.21 )

In view of (2.2) the terms with e - is in (2.21) and the function G_(s) contribute terms in
the solution which are exponentially smalL Therefore we drop them from (2.19) which
becomes

1[ (l-d)2] 1 1-d 1.j(2n)p_(s)S(s) = .j(2n)G+(s)+-:- vo+---- +- ---.-.
IS 2R 8

2 R IRs3 (2.22)

This is the fundamental functional equation which can be solved with the aid of the
standard Wiener-Hopf method.

3. SOLUTION OF THE FUNCl10NAL EQUATION (2.22)

For a general discussion of the problem (2.22) we refer to our Refs. [1] and [2] or to
the literature on the Wiener-Hopf technique e.g. [3]. Ifwe put s equal to zero in the function
8(s), given in (2.9), we obtain

8(0) = q(1- 2v)
2(I-v)2

and its asymptotic formula for lsi -+ (X) in the strip is given by

S( ) '" -~[1 if(l-2V)]
00 s + 2(1 - v) .

(3.1)

(3.2)



228

We decompose S~s) according to
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D.3)

(3.4)

where S _(s) is regular in a lower half-plane and S+(s) is regular in an upper half-plane.
The two half-planes have a strip below the real axis in common. Using (3.3) we write (2.22)
in the form

[ { 2( 2) } ~l.l '. I s (I - d) 1-d I 3 •
s S_(.s)p_{s) = S+(s) J(2n)~i DO+ji'- + R s iR +s·G+(s).

and we conclude that both sides of this equation must be equal to a polynomial.
From the asymptotic formulae of S.(s) and SI(S) in their respective half-planes as

lsi -> UJ (cf. Appendix)

S_(s) .~ O(S~iI),

S tis) ~ O(SI ~iI).

(3.5)

(3.6)

(3.9)

and from the assumption of bounded pressure, we see that the degree of the polynomial
does not exceed one. We then find

(;0 +c1sP.(s) =-3...--' (37)
S' S.(s)

G+(s) = :~;:\~~f+~(~n) {{( Do +(l_;~:)~) -1R d .5;+ i~~S+ (3.~)
The solution (3.7), (3.8) contains four unknown constants: Co, C1 , Vo and d, which have

to comply with the conditions expressing the regularity of G+(s) at s = 0, yielding

I S+(OJ
Co = -""J(2~~TR '

(;1 = J(~:;) ~[(1-d)S+(O)+iS'+(O)], (3.10)

~S'~(O)+(I-d)S'+(O)-is+(O{VoR +~!"/!~J = O. (3.11)

The equations (3.9H3.11) constitute three equations for the four unknowns. By considering
the system with a reversed motion:

I-> -I
we can supply the additional equation.

Denoting the functions pertaining to the reversed motion by a star

(3.12)

we obviously have

Sis) -> S*(s),

d* = I-d.

Cl -> cr, (3.13)

13.14)

(3.15)
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Analogous to (3.9H3.11) we then obtain

1 St(O)
C6 = - J(2n) iR'

c! ~(~n) ~[dSt(O)+iSt'(O)],
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(3.16)

(3.17)

(3.18)

The constants co, c1, C6, c!, Vo and d may be determined by the equations (3.9H3.11)
and (3.16H3.18).

(x > ~),

4. THE PRESSURE AND THE DISPLACEMENT

From (3.7) and (2.16) we find for the pressure p

( ) 1 foo
+

ir
co+c 1s -is(x-1)dpx = -- ~3----e s,

J(2n) -oo+ir S S_(s)

where -1;3 < Y < -1;1'

Referring to (2.15) we see from (4.1) that p(x) satisfies

(4.1)

From (3.8) and (2.17) we derive

p(x) = 0, (x 2: 1). (4.2)

1 foo
+

ir
[Co+c1s 1 {i( (l-d)2) I-d I}] -is(x-1)d

g(x) = J(2n) -oo+ir S3S+(S) +J(2n) ~ vO+2R - Rs2 + iRs3 e s,

(x > 0). (4.3)

From the representation (4.3) it may be shown that g(x) satisfies (2.13), while g(l)
and g'(l) are given by

and

(l-d)2
g(l) = vo+~,

g'(l) = 1;d,

(4.4)

(4.5)

respectively.
In order to find the pressure p(x) for x < ! and the displacement g(x) for x < 0, we

use the results obtained for the reversed motion (3.12). In this way we arrive at

1 foo + ;r c* + c*s .
p(x) = --_ 0 1 e1SX ds

J(2n) -oo+;r S3S!(S) ,
(x < t), (4.6)
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and
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(x < I)

(4.7)

(4.S)

(5.1)

From these results we infer some conclusions similar to (4.2), (4.4) and (4.5).
The total force P is found by integrating pix) over the interval 0 ::; x ::; 1. We find

. J<X! +iy { * * }P = __1__ c~+c0"+C~+*C1S eis/ 2 ds.
J(2n) -;+ i: S S _Is) s S _Is)

5. NUMERICAL RESULTS

Using the Tables 1 and 2 (ef. Appendix) we have evaluated the displacement Vo for
some values of Poisson's ratio and the friction coefficient. The results are given in Table 3.
We also obtained some values for the constant d which are given in Table 4. By contour
integration of (4.8) we calculated the total force P. We found

[
C C c* c* J

P = J(2n) S-<O)a+S_(O)b+ S!(oja*+ S!(O)b* ,

where

_.~ 1 S'_(O) ~(S'~(O) _~ Sf/.(O») (_~ S'~(O) S'_(O)S'.'.(O) _ S'~(O»)
a = 48+8 S _(0) + 2 S~(O) 2 L(O) + 6 L(O) + S~(O) S~(O) ,

1 i S'_ (0) (S'~ (.0) 1 S'.'. (0»)
b = -8-2 L(O)+ S~(0)-2S_(0)'

while a* and b* are similar expressions, formed from S!(O) and the derivatives.

(5.2)

(5.3)

TABLE I

f 5+(0) 5'+(0) 5';(0) 5'~(0) 5_(0) 5'_(0) 5'~(0) 5'~(0)
._-_..

'--~'-------~'-'--"-'-

0·2 0·] -2·1333q J +0·39 i +0·011 q +0.096 iq2 -0·16 iq -0·05 q 2 -0·003 iq'
0·2 0·5 -2·1333q-J +0·45 i +0·028q +0·16iq2 -0·12iq -O·03 q 2 +0·017 iq'

0-4 0·1 -3·6q 1 -0·69 i +3·46q + 15.95 iq2 +0·05 iq +0·43q' -1·61 i,j"
0-4 0·5 -3·6q-l -1·91 i +8·98q + 51.86 iq 2 -0·21 iq -0.37 q' +1·41 i<j'J

TABLE 2

j 5,\-(0) 5~(0) 5,\-"(0) 5,\-"'(0) 5*.(0) 5*.'(0) 5,\-"(0) 5""(0)

0·2 0·] -0·16 iq +0·]05 q 2 -0.08 iq' -O·46875q +0.09 iq2 -0·034q,J +0.04 iq4
0·2 0·5 -0·12 iq +0·063 q2 -0.018 iq3 -0·46875q +0.10 iq2 -0·049q' +0.07 iq4

0·4 0·1 +0·05 iq -0·42 q2 -1.73 iq·J -0·2778q -0·15iq2 -0·29q-' +0·92 iq"
0·4 0·5 -0·2] iq +0·46 q2 +0.88 iq3 -0·2778q -0.42 iq2 -0·85q' +- ].55 iq"
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TABLE 3

v f Vo

1
0·2 0·1 -[ -0·12S-0·086q+0·02Sq2+O(q3)]

R

0·2 0·5 1 2 3 ]-[ -0·125-0·083q+0·014q +O(q )
R

1
0·4 0·1 -[ -0·125+0·060q-0-475 q2+O(q3)]

R

0-4 O·S ~[ -0·125+0·0l4q-0·480q2+O(q3)]
R

TABLE 4

v f d

0·2 0·1 0.5+0.011q+0.OSI q2+0(q3)
0·2 O·S O·S + 0·046 q +0.023 q2 + O(q 3)

Q.4 0·1 0.5 -0.071 q + 0.453 q2 +0(q3)
0·4 0·5 0·S-Q.238 q + 1.464 q2+O(q3)

In (5.1) the contributions resulting from the poles of S _(s) and S!(s) have been omitted
in view of the consistency with the approximations, made a priori. In Table 5 we show the
results of this computation.

The pressure distribution p(x) has been calculated by contour integration of (4.1) and
(4.6). In theregion! ~ x < l-e4,withe4 > q/aandin the region es < x ~ !withes > q/a
we may neglect the poles of S_(s) and S!(s), respectively, as they contribute terms which
are exponentially small. In the first region we find

TABLE S

v f p

1
0·2 0·1 -[0·178 q-l +0.024+0.027 q -0.037 q2+0(q3)]

R

1
0·2 0·5 - [0·178 q .. 1 + 0.065 + 0.005 q + 0.020 q2 + O(q 3))

R

1
0·4 0·1 -[0·3 q"l -0.202+0.094q +3.923 q2 +O(q3)]

R

1
0·4 0·5 R[0.3 q- [-0·253 + 3·l19q +26.471 q2 +O(q3)]

(5.4)
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0.5

t: 0.1

I.O-X0.750.50)5o

0.2 +----/--.+-+------f----

0.' +---- --+---F----+

0_1 +--II"------t-------t-.

FIG. I. The pressure distribution forI = O. I.

I,D _I0.750.50.25o

0.1 +----/1------+----+-------

0,2 +---+-~-+---------t--------+'I.,-------\------1

0.3 +---------+-

FIG. 2. The pressure distribution forI = 0.5.
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and a similar expression is obtained for the region! z x > e5' In the neighbourhood of
x = 1, the pressure p(x) tends to zero as

p(x) = 0[(1- X)1-8], x ~ 1, (5.5)

while near x = 0 the corresponding formula is

p(x) 0[x8
], x ~O. (5.6)

In Figs. 1 and 2 Rq p(x) is given as a function of x for some values of Poisson's ratio and
the friction constant.
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APPENDIX

The problem of the decomposition of the function S(s), given in (2.9) is solved by a
straightforward splitting of the product representation. To facilitate the discussion we
introduce

z = 2qs,

with

f
t = 4(1-v)' IX = 3-4v, fJ = 2(1- 2v), S(s) = q'l'(z), (A.1)

Writing

with

'1"(0) = _if_I - 4v
S(1-v?'

\H( ) = T(z)
T Z N(z)'

(A.2)

(A.3)

(A.4)

(
sinh z) [T(z) = 2 I-IX--;--- +2itz 1 (A.5)

(A.6)
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we see that '¥(z) is a meromorphic function. The zero's of N(z) are
(a) two points on the imaginary axis: ia and .- ia, with a > 0;
(b) an infinite sequence of points in the complex plane: Pk' - Pk' Pk' ~h. (k 1.2.

with 1m Pk > 0, Re Pk > O.
The zero's of T(z) are, for I > O.

(a) one point on the imaginary axis: ie, with (' < 0:
(b) an even number of points on the same axis: ih" ihz... ib zn , with bk > O. It appears

that n = 0, 1 or 2;
(c) an infinite sequence of complex numbers qk.-(!k, (k = 1,2, ... ), with Imqk > O.

Reqk>O;
(d) an infinite sequence of complex numbers rk , --i\, (k = 1,2, .. .j, with 1m rk <: O.

Re rk > O.
We have derived some asymptotic expressions for the roots. We found

Pk = IOg(~~:n2) +2kni+0(1~~),

qk = IOg[;;J(f~;)Zii/21+i(2kn-;-cpo)+0(1~.%.~), k» 1 (A.7)

rk = IOg[;;J(f~;fZiZ)k2j -i(2kn+; +CPO) +O(~f~)'
with

CPo = arctan (3t,
n

o < CPo < 2' (A.S)

According to a well-known theorem we may represent '¥(z) in the following form

z~'ig: (l-z/ibd(l-z/ibz)··· (l - ?/ie)
'¥(z) = '11(0) e . - (l=~/id)Cl-~.~/i-a)· --

fI (L:- z/q k~~I,± Z/qk)( ~:-z/rd (2.:+:.-::ji\)
k= 1 (l-z/pd(1 +z/Pk)(l-z/PkHI +z/J5d

exp z{( i~l+ i~z + ... +b) + (J~-~k + :k-~)}.
The representation (A.9) is

(A.9)

'¥ = '11(0) econSLz j->~(z) ,
Pz(z)

(A. 10)

(A.II)

where PI and Pz denote the products in nominator and denominator of (A.9) respectively.
It may be shown that (A.10) may be written as

(l-z/ibd(l-z/ibz) ... (l-z/ie)
'¥(z) = '11(0) . (l-z/ia)(l +z/i~--'

cD (l~z/qkHl+z/qkHI-z/rd(1+z/rk)

}]I (1- z/PkHl + z/pd( l"'::'-;/Pk)(1 + z/pd'
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From (A.ll) we derive for the decomposition

the following representations
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(A.l2)

(A.13)

(A. 14)

(1 +zjia). eX(z) 00 (1 +zjpkHl-zjpk)
'¥+(z) = '¥(OHl-zjic) J]l (l-zjrkHl+zjfJ'

()
_ (1-zjib tHl-zjib2) ... ex(z) floo (l-zjqkHl+zjqk)

'¥ z - ,
- (1 zjia) k= 1 (1 zjpkHI +Zjpk)

where X(z) has to be determined.
With the aid of(A.7) it may easily be proved that the products in (A.l3) and (A. 14) con­

verge. Ifwe require algebraic behaviour for 'I' +(z) and 'I' _(z) in their respective half-planes,
as Izi -+ 00, we have to take

(A.18)

x(z) = O.

This may be proved as follows.
We compare the product P(z), defined by

00 00

P(z) = fl (l+zjpk)e-z/2k1ti .fl (l-zjpk)e- z/2k1r',
k=l k=l

with

00 ..[ 1 J2J(z) = fl (1 +zj2kni)2 e- z/k", = e- YZ /
n1 -----. ,

k= 1 r(l + zj2m)

where y is Euler's constant. Then we find

~g; ~ 0(1), for Izi -+ 00 in the upper half-plane.

Writing the product in (A.l3) in the following form

00 00

fl (1 + Zjpk) e- z/2kni. fl (1- zjpJ e- zl2krri
k=l k=l

00 00

fl (1-zjrk)e-z/2k1ri. fl (1+zjfk)e-z/2kni
k= 1 k= 1

we see that for Izi -+ 00 its asymptotic behaviour in the upper half-plane is given by

r
r(l+ n

j
2+lpO+-=--)]

2

O(l)[e -yzl2ni 1 J2 eyz/2ni 2n 2ni
r(1 + zj2ni) ( nj2 + lpO)

r 1+ 2n

_ 0(1)(r(5j4+<fJoj2n+z/2ni»)
2

1/2- ~ Z +'1'oln
r(l +zj2ni)

(A.15)

(A.l6)

(A.17)
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From (A.18) we see that we must take X = 0, as has already been stated by (A.IS).
For v c/ 1, C c/ 0 and we conclude that the asymptotic formula for S +(8) is

conform to (3.6), as

From (A.19) we infer that

qJO/TC = i-U

(1\.19)

(A.2U)

(A.21)

(1\.22)

according to (3.5).
Numerical values of S'+(O), S'~(O), S'~(O) and S'_(O), S'~(O), S''::(O) are given in Table I

For the reversed motion (3. I2) we define

* T*(z)'P = ------­
N(z) ,

which satisfies

From (A.23) we infer that

'P*( -z) = 'P(z)

'P~(z)

T*( - z) T(z)
---

N(z) N(z)
(A.23)

(A.24)

(A.25)
I

-----_.~------

'P_(-z)

From (A.24), (A.25) we have found the numerical values of S~'(O), S~"(O), S!."'(O) and
S!.'(O), 5*"(0), S!."'(O), which are presented in Table 2.

We note that we have

(A.26)

In our numerical calculations it is preferable to normalize S _(0) and S +(0) in another
way. We take

1 2(1-V)2
5 +(0) = S(O) = -q(l-i-;;)'

From (A.24) and (A.25) we see that then

(A.27)

S~(O) = 1 ,
* q(l 2v)5 (0) = ----------.
- 2(1- V)2

(A.28)

From the definition S ~(s) S(s)S +(s) we further derive that

S' (0) = S'(O)3S~ - V)2 +1Q.::- 2v) S' (0)
- q(l 2v) 2(1 - V)2 + ,

(A.29)
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f • 2 1-4v
S(O) = -2ifq 8(1-v)2"

(Received 29 September 1969)
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(A.30)

A6CTpaKT-IIoJIY'iaeTClI npH6JIlllKeHHoe pellleHHe KOHTaKTHOH 3a.lla'iH, KaCalOIl(eHClI CJIOll KOHe'iHoit

TOJIlllHHhI, HarpylKeHHoro mepeXOBaThIMlIJ1JIHH.llPH'iecKHM Il(TOMnOM, KOTOPhlit .llBHlKeTClI B.llOJIh rpaHHIJ.hI.

IIpe.llJIaraeTClI nOCTOlIHHbIH K03<!>$HIJ.HeHT TpeHHlI. HHlKHlllI CTopOHa CJIOR rrpHKperrJIeHa K lKecTKOMM

OCHOBaHHIO. B 3a.lla'fe npeHe6peraeTCSI HHepIJ.HOHHhIMH yCJIOBHRMH. PellleHHe npH6JIHlKaeTCSI C nOMoIl(61O

pellleHHll .llJI1I nJIOCKOH .lle$opMaIJ.HH. B 3TOH 'faCTH pa60ThI npe.llnOJIaraeTCR, no OTHomeHHIO K mHpHHe

paHOHa KOHTaKTa, O'feHh TOHHHH CJIOH. Onpe.lleJISlIOIl(ee HHTerpaJIbHOe ypaBHeHHe CBO.llOTCR K ypaBHeHHIO

THna BHHepa·Xon$a. B pellleHHH npeHe6peralOTCli rrOCTeneHHO 'iJIeHaMH 3KnOTeHIJ.HSlJIbHOrO y6bIBaHHR.


